TEORIAS E FILOSOFIAS DE GRACELI 159


terça-feira, 26 de fevereiro de 2019




x
decadimensional
x
T l    T l     E l       Fl         dfG l   
N l    El                 tf l
P l    Ml                 tfefel 
Ta l   Rl
         Ll





x
decadimensional
x
T l    T l     E l       Fl         dfG l   
N l    El                 tf l
P l    Ml                 tfefel 
Ta l   Rl
         Ll






x
decadimensional
x
T l    T l     E l       Fl         dfG l   
N l    El                 tf l
P l    Ml                 tfefel 
Ta l   Rl
         Ll





x
decadimensional
x
T l    T l     E l       Fl         dfG l   
N l    El                 tf l
P l    Ml                 tfefel 
Ta l   Rl
         Ll




x
decadimensional
x
T l    T l     E l       Fl         dfG l   
N l    El                 tf l
P l    Ml                 tfefel 
Ta l   Rl
         Ll




x
decadimensional
x
T l    T l     E l       Fl         dfG l   
N l    El                 tf l
P l    Ml                 tfefel 
Ta l   Rl
         Ll




x
decadimensional
x
T l    T l     E l       Fl         dfG l   
N l    El                 tf l
P l    Ml                 tfefel 
Ta l   Rl
         Ll



x
decadimensional
x
T l    T l     E l       Fl         dfG l   
N l    El                 tf l
P l    Ml                 tfefel 
Ta l   Rl
         Ll




x
decadimensional
x
T l    T l     E l       Fl         dfG l   
N l    El                 tf l
P l    Ml                 tfefel 
Ta l   Rl
         Ll





x
decadimensional
x
T l    T l     E l       Fl         dfG l   
N l    El                 tf l
P l    Ml                 tfefel 
Ta l   Rl
         Ll





x
decadimensional
x
T l    T l     E l       Fl         dfG l   
N l    El                 tf l
P l    Ml                 tfefel 
Ta l   Rl
         Ll





x
decadimensional
x
T l    T l     E l       Fl         dfG l   
N l    El                 tf l
P l    Ml                 tfefel 
Ta l   Rl
         Ll




   
x
decadimensional
x
T l    T l     E l       Fl         dfG l   
N l    El                 tf l
P l    Ml                 tfefel 
Ta l   Rl
         Ll



 
x
decadimensional
x
T l    T l     E l       Fl         dfG l   
N l    El                 tf l
P l    Ml                 tfefel 
Ta l   Rl
         Ll



Sendo assim,
    
x
decadimensional
x
T l    T l     E l       Fl         dfG l   
N l    El                 tf l
P l    Ml                 tfefel 
Ta l   Rl
         Ll




    
x
decadimensional
x
T l    T l     E l       Fl         dfG l   
N l    El                 tf l
P l    Ml                 tfefel 
Ta l   Rl
         Ll



x
decadimensional
x
T l    T l     E l       Fl         dfG l   
N l    El                 tf l
P l    Ml                 tfefel 
Ta l   Rl
         Ll


 
x
decadimensional
x
T l    T l     E l       Fl         dfG l   
N l    El                 tf l
P l    Ml                 tfefel 
Ta l   Rl
         Ll




x
decadimensional
x
T l    T l     E l       Fl         dfG l   
N l    El                 tf l
P l    Ml                 tfefel 
Ta l   Rl
         Ll



   
x
decadimensional
x
T l    T l     E l       Fl         dfG l   
N l    El                 tf l
P l    Ml                 tfefel 
Ta l   Rl
         Ll



]
x
decadimensional
x
T l    T l     E l       Fl         dfG l   
N l    El                 tf l
P l    Ml                 tfefel 
Ta l   Rl
         Ll


Estados Mistos e Puros

Quando uma medida é operada em um sistema quântico, ela só possui sentido se for utilizado o conceito de média de ensemble, ou seja, sistemas a priori identicamente preparados. Após a realização da medida obtêm-se uma caracterização estatística dos constituintes do estado final total, composto por todos os subsistemas onde a medição fora realizada. Por exemplo, após a realização de um experimento Stern-Gerlach, sabemos que o estado físico do feixe de átomos de prata após a interação com o campo magnético externo possui uma população de 50% dos seus átomos colapsados em um estado de spin para cima e a parcela restante, também composta por 50%, possui spin para baixo. Entretanto, ao sair do forno, ou em outras palavras, antes da medição, não podemos caracterizar os estados físicos dos átomos que constitui o feixe; o spin individual de cada átomo pode estar apontando para qualquer direção, utilizando termos gerais, o estado físico é randômico.
Para o caso dos sistemas físicos onde não ocorreu uma medição, sabemos que eles são compostos por um número finito de constituintes, de forma que podemos atribuir um peso a sua população relativa de um dado estado particular, ou seja,
Nesta equação,  é o ket que representa o sistema físico antes de uma medida, os coeficientes configuram os pesos dados pela população fracionária que possui em comum a representação do ket  e N é o número de indivíduos no ensemble, ou o número de sistemas identicamente preparados. Nesse caso, deve-se tomar cuidado para não confundir o número de indivíduos que compõem o sistema com a dimensão do espaço gerado pelos auto vetores de um dado observável, N geralmente supera com folga a dimensão do auto-espaço de um dado operador.  Como estamos tratando de uma população fracionária, obviamente, a soma dos pesos deve ser a unidade. Somos impostos a condição
Além disso, não se tem nenhuma informação geométrica dos kets mediados pelos Eles podem muito bem ser ortogonais entre si, como não, podem ser auto vetores de um operador em comum como também o podem não ser e nem sabemos se os operadores que os representam são compatíveis ou não. Sendo assim, podemos definir a natureza estatística deste conjunto; antes de realizarmos a medida em um sistema composto pela população de estados físicos, considerando que exista mais de um diferente de zero, dizemos que configura um ensemble misto. Agora, após a realização de uma medida, podemos analisar em sua totalidade a parte da população fracionária caracterizada por um certo estado físico em comum, ou seja, a coletânea de sistemas físicos tais quais são representadas por um único ket. Para este último caso, damos o nome de ensemble puro. Ou seja, um ensemble misto é composto por uma coleção de ensembles puros.

Construção do Operador Densidade[editar | editar código-fonte]

Considerando a medida de algum observável, essa o qual só será possibilitada a partir de uma média sobre ensembles, como por exemplo o observável , que na construção formal da mecânica quântica é um operador, obtemos para sua média 
Valendo a equação de autovalores , obtêm-se,
A partir deste resultado, deve-se alertar a construção de duas estatísticas independentes na obtenção de uma única medida, os pesos populacionais de cada estado físico, compõem uma abordagem estatística que acaba mediando a média de ensemble das previsões quânticas, que também constituem um escopo estatístico em si.
O formalismo quântico permite quantas mudanças de base forem necessárias, de forma que podemos escrever,
O termo destacado entre parenteses é definido como elemento de matriz de um certo operador hermitiano, denominado matriz densidade ou ainda, operador densidade 
Sendo assim, a forma geral do operador é dada por,
Considerando esta construção, a expressão para toma uma forma muito mais compacta,
    
Onde a operação corresponde ao traço do operador resultante do cálculo de , ficando assim explicita o poder generalizado desta construção: o traço independe da representação.
Resumidamente, encontramos que a média sobre ensemble de um observável  é dada por,
Agora, analisando o traço do operador identidade separadamente, temos que,
Agora, para um ensemble puro, onde a população relativa torna-se total, com teremos a matriz densidade 
     
Daí, tem-se que,
Ou seja, é um projetor,
Então, somente para um estado puro,
Sendo assim, os autovalores associados ao operador densidade de ensembles puros deve sempre ser zero ou um, de forma que quando diagonalizamos a matriz densidade esperamos encontrar um objeto matemático na forma de,
Em contrapartida, um ensemble totalmente misto deve possuir a matriz densidade , com a estrutura,
É obvia a confrontação frente duas matrizes diagonais N-dimensionais, sujeitas a mesma condição de normalização, que representam objetos físicos diametralmente opostos. É conveniente então a definição de uma grandeza que distingua as qualidades físicas intrínsecas a cada objeto. Com este espírito, defini-se a Entropia de Von Neumann,
Como todos os elementos não diagonais de ambas as matrizes são nulos, pode-se escrever a forma diagonal da entropia,
Para um ensemble completamente misto, teremos a entropia , dada por,
    
Em contrapartida, o operador densidade relacionado a um estado puro, resulta em uma entropia nula,
   
É valida a observação de que nesta definição entropica, recupera-se a interpretação da medida de desordem de um sistema, o seu caosLudwig Boltzmann relacionou a saturação energética natural dos sistemas termodinâmicos, a entropia S, com o número de microestados possíveis   que podem ser acessados ao mesmo, apresentando a equação que hoje consta em sua lápide, . Sendo assim, para pequenos valores de , tem-se uma baixa entropia, além de que para um único estado possível, , ocasiona entropia nula, correspondentemente idêntico ao caso puramente quântico explicitado na entropia de Von Neumann para um estado puro.

Progressão temporal de um Ensemble estatístico[editar | editar código-fonte]

A fim de avaliar a evolução temporal do operador densidade, é possível tomar sua derivada temporal, onde aprioristicamente não é considerada uma dependência exclusivamente temporal. Além disso, as populações mantém-se estáticas, sendo assim,
Neste regime é valida a substituição heurística,
 
Sendo assim, a derivada temporal assume a forma,
Ou seja, obtém-se,
    
Esta equação pode ser interpretada como o análogo quântico do teorema de Liouville.

Representação dos Ensembles Micro-Canônico e Canônico quânticos[editar | editar código-fonte]

A conexão entre a mecânica estatística e a mecânica quântica é motivada a partir do segundo postulado da termodinâmica,
Postulado II: Pode-se supor a existência de uma função, chamada entropia, que depende apenas das variáveis extensivas do problema, cujo máximo fornece a configuração de equilíbrio do sistema termodinâmico sob análise.
Levanto em frente as consequências do segundo postulado, pode-se extrair informações a respeito dos ensembles estatísticos a partir da extremização da entropia de Von Neumann, logo,
    
É obrigada a restrição sobre este máximo de que a conservação da probabilidade seja confirmada, de forma que inclui-se a restrição,
    
Sendo assim, a junção entre a restrição imposta e a extremização da entropia é dada via multiplicadores de Lagrange,
Se considerarmos uma variação arbitrária, ela só será possível se o objeto sobre soma for nulo de forma que encontramos,
   
Podemos determinar a constante  a partir de uma simples normalização, obtendo , recupera-se então a expressão para 
Esse resultado confirma o sucesso da construção; em seu estado mais fundamental,  remonta o ensemble micro-canônico; nesse caso, se considerarmos que não existe degenerescência, cada estado é caracterizado por um ket específico configurando um microestado. Como o peso estatístico de cada microestado é o mesmo, , encontra-se naturalmente a hipótese de microestados igualmente prováveis a priori, uma das hipóteses pioneiras no desenvolvimento de uma mecânica estatística consistente.
Embora tenha sido estabelecida a construção coerente da mecânica estatística quântica, um caso mais rico em aplicações pode ser obtido se somarmos uma restrição na extremização da entropia de Von Neumann,
   
ou seja, a média de energia possui um valor estabelecido. Sob mais esta condição, que remonta um sistema físico em equilíbrio térmico com uma fonte, teremos para uma maximação da entropia,
 
Sendo assim,
    
Pode-se determinar a constante a partir de uma normalização direta, da qual obtém-se
    
A expressão no denominador remonta um conceito muito explorado na mecânica estatística clássica, a função partição 
Sendo assim, a matriz densidade no ensemble canônico, é expressa por,
 
Uma vez determinada a matriz densidade de um certo sistema físico, é possível analisar a magnitude dos seus valores médios. Se considerarmos o observável de interesse, teremos para o seu valor médio 
Um caso específico a ser tratado nos problemas de mecânica estatística é a determinação da energia média de um sistema também chamada de energia interna Teremos,
   
Equivalentemente na mecânica estatística clássica, onde,











Estados de Graceli de matéria, energias, momentuns, inércias, e entropias.


Estados térmico.
Estado quântico.
De dilatação.
De entropia.
De potencia de entropia e relação com dilatação.
De magnetismo [correntes, momentum e condutividades]..
De eletricidade [correntes, momentum e condutividades].
De condutividade.
De mometum e fluxos variados.
De potencial inercial da matéria e energia.
De transformação.
De comportamento de cargas e interações com elétrons.
De emaranhamentos e transemaranhamentos.
De paridades e transparidades.
De radiação.
Radioatividade.
De radioisótopos.
De relação entre radioatividade, radiação, eletromagnetismo e termoentropia.
De capacidade e potencialidade de resistir a pressão, a capacidade de resistir a pressão e transformar em entropia e momentum.

De resistir à temperaturas.
E transformar em dilatação, interações entre partículas, energias e campos.
Estado dos padrões de variações e efeitos variacionais.
Estado de incerteza dos fenômenos e entre as suas interações.


E outros estados de matéria, energia, momentum, tipos de inércia [como de inércia potencial de energias magnética, elétrica, forte e fraca, dinâmica, geométrica [côncava, convexa e plana] em sistema.


E que todos estes tipos de estados tendem a ter ações de uns sobre os outros, formando um aglomerado de fenômenos de efeitos na produção de novas causas. E de efeitos variacionais de uns sobre os outros, ou seja, um sistema integrado.



Sobre padrões de entropia.

Mesmo havendo uma desordem, esta desordem segue alguns parâmetros futuros e que dependem de condições dos estados de Graceli, ou seja, a desordem segue alguns padrões e ordens conforme avança e passa por fases e agentes fenomênicos, estruturais e geométricos.


Porem, a reversibilidade se torna impossível, aumenta a instabilidade e as incertezas de posição, intensidade, variações, efeitos e outros fenômenos conforme as próprias intensidades de dilatações, e agentes e estados envolvidos.


Levando em consideração que mesmo havendo ordem não é possível a reversibilidade do estado e condições em que se encontravam a energia, matéria, momentum, inércias, dimensões, e outros agentes.


A temperatura pode voltar ao seu lugar e ao seu ponto inicial, mas não as estruturas das partículas, as intensidades infinitésimas de padrões de energias, e nem o grau de oscilações que a energias, as interações, as transformações que passam estas partículas e suas energias, estruturas e interações, e as interações e intensidades de grau de variação de cada agente.


Porem, a desordem é temporal, ou seja, com o passar do tempo outras ordens e padrões se afirmarão.


Sendo que também a entropia varia conforme intensidade de instabilidade por tempo. E tempo por intensidade de instabilidade.


Assim, segue efeitos variacionais e de incertezas por instabilidade de energia adicionada, e de tempo.


Ou seja, uma grande instabilidade e desordem em pouco tempo vai levar a uma grande e instável por mais tempo uma entropia.


Do que um grande tempo com pequena intensidade de instabilidade e energia adicionada num sistema ou numa variação térmica.


Ou mesmo numa variação eletromagnética, ou mesmo na condutividade.


Princípio tempo instabilidade de Graceli.

Assim, a desordem acaba por encontrar uma ordem se não acontecer nenhuma instabilidade novamente. Pois, as partículas e energias tendem a se reorganizar novamente conforme o passar do tempo,  e esta reorganização segue um efeito progressivo em relação à desordem e tempo. Como os vistos acima.


Ou seja, aquela organização anterior não vai mais acontecer, pois, segue o princípio da irreversibilidade, mas outras organizações se formarão conforme avança o tempo de estabilidade.


as dimensões categorias podem ser divididas em cinco formas diversificadas.

tipos, níveis, potenciais, tempo de ação, especificidades de transições de energias, de fenômenos, de estados de energias, físicos [estruturais], de fenômenos, estados quântico, e outros.



paradox of the system of ten dimensions and categories of Graceli.



a four-dimensional system can not define all the energies, changes of structures, states and phenomena within a structure, that is why there are ten or more dimensions, I have developed and I work with ten, but nature certainly goes beyond ten, with this we move to a decadimensional and categorial universe.



that is, categories ground the variables of phenomena and their interactions and transformations.



and with this we do not have a relationship with mass, but with structure, therefore, a structure carries with it much more than mass, since also mass is related to forces, inertia, resistances and energies.



but structures are related to transitions of physical states, quantum, energies, phenomena, and others.



as well as transitions of energies, phenomena, categories and dimensions.

paradoxo do sistema de dez dimensões e categorias de Graceli.

um sistema de quatro dimensões não tem como definir todas as energias, mudanças de estruturas, estados e fenômenos dentro de uma estrutura, por isto se tem dez ou mais dimensões, desenvolvi e trabalho com dez, mas a natureza com certeza vai alem das dez, com isto caminhamos para um universo decadimensional e categorial.

ou seja, as categorias fundamentam as variáveis dos fenõmenos e suas interações e transformações.

e com isto não se tem uma relação com massa, mas com estrutura, pois, uma estrutura carrega consigo muito mais do que massa, uma vez também que massa está relacionado com forças, inércia, resistências e energias.

mas estruturas está relacionado com transições de estados físicos, quântico, de energias, de fenômenos, e outros.

como também transições de energias, fenômenos, categorias e dimensões.







 = entropia reversível

postulado categorial e decadimensional Graceli.

TUDO QUE ESTÁ RELACIONADO COM ENERGIA, ESTRUTURAS, FENÔMENOS E DIMENSÕES ESTÁ INSERIDO NO SISTEMA DECADIMENSIONAL E CATEGORIAL GRACELI.


todo sistema decadimensional e categorial é um sistema transcendente e indeterminado.
matriz categorial Graceli.

T l    T l     E l       Fl         dfG l   
N l    El                 tf l
P l    Ml                 tfefel 
Ta l   Rl
         Ll
         D


1] Cosmic space.
2] Cosmic and quantum time.
3] Structures.
4] Energy.
5] Phenomena.
6] Potential.
7] Phase transitions of physical [amorphous and crystalline] states and states of energies and phenomena of Graceli.
8] Types and levels of magnetism [in paramagnetic, diamagnetic, ferromagnetic] and electricity, radioactivity [fissions and fusions], and light [laser, maser, incandescence, fluorescence, phosphorescence, and others.
9] thermal specificity, other energies, and structure phenomena, and phase transitions.
10] action time specificity in physical and quantum processes.




Sistema decadimensional Graceli.

1]Espaço cósmico.
2]Tempo cósmico  e quântico.
3]Estruturas.
4]Energias.
5]Fenômenos.
6]Potenciais., e potenciais de campos, de energias, de transições de estruturas e estados físicos, quãntico,  e estados de fenômenos e estados de transições, transformações e decaimentos.
7]Transições de fases de estados físicos [amorfos e cristalinos] e estados de energias e fenômenos de Graceli.
8]Tipos e níveis de magnetismo [em paramagnéticos, diamagnético, ferromagnéticos] e eletricidade, radioatividade [fissões e fusões], e luz [laser, maser, incandescências, fluorescências, fosforescências, e outros.
9] especificidade térmica, de outras energias, e fenômenos das estruturas, e transições de fases.
10] especificidade de tempo de ações em processos físicos e quântico.


T l    T l     E l       Fl         dfG l   
N l    El                 tf l
P l    Ml                 tfefel 
Ta l   Rl
         Ll
         D


Matriz categorial de Graceli.


T l    T l     E l       Fl         dfG l   
N l    El                 tf l
P l    Ml                 tfefel 
Ta l   Rl
         Ll
         Dl


Tipos, níveis, potenciais, tempo de ação, temperatura, eletricidade, magnetismo, radioatividade, luminescências, dinâmicas, estruturas, fenômenos, transições de fenômenos e estados físicos, e estados de energias, dimensões fenomênicas de Graceli.

[estruturas: isótopos, partículas, amorfos e cristalinos, paramagnéticos, dia, ferromagnéticos, e estados [físicos, quântico, de energias, de fenômenos, de transições, de interações, transformações e decaimentos, emissões e absorções, eletrostático, condutividade e fluidez]].
trans-intermecânica de supercondutividade no sistema categorial de Graceli.

EPG = d [hc] [T / IEEpei [pit] = [pTEMRLD] and [fao] [itd] [iicee] tetdvd [pe] cee [caG].]

p it = potentials of interactions and transformations.
Temperature divided by isotopes and physical states and potential states of energies and isotopes = emissions, random wave fluxes, ion interactions, charges and energies structures, tunnels and entanglements, transformations and decays, vibrations and dilations, electrostatic potential, conductivities, entropies and enthalpies. categories and agents of Graceli.

h e = quantum index and speed of light.

[pTEMRlD] = THERMAL, ELECTRICAL, MAGNETIC, RADIOACTIVE, Luminescence, DYNAMIC POTENTIAL] ..


EPG = GRACELI POTENTIAL STATUS.

[pTFE] = POTENCIAL DE TRANSIÇÕES DE FASES DE ESTADOS FÍSICOS E DE ENERGIAS E FANÔMENOS [TRANSIÇÕES DE GRACELI]

, [pTEMRLD] [hc] [pI] [PF] [pIT][pTFE] [CG].

terça-feira, 19 de fevereiro de 2019



x
x

 = entropia reversível
x
decadimensional
x
T l    T l     E l       Fl         dfG l   
N l    El                 tf l
P l    Ml                 tfefel 
Ta l   Rl
         Ll
         D




x
x

 = entropia reversível
x
decadimensional
x
T l    T l     E l       Fl         dfG l   
N l    El                 tf l
P l    Ml                 tfefel 
Ta l   Rl
         Ll
         D




x
x

 = entropia reversível
x
decadimensional
x
T l    T l     E l       Fl         dfG l   
N l    El                 tf l
P l    Ml                 tfefel 
Ta l   Rl
         Ll
         D




x
x

 = entropia reversível
x
decadimensional
x
T l    T l     E l       Fl         dfG l   
N l    El                 tf l
P l    Ml                 tfefel 
Ta l   Rl
         Ll
         D


O modelo spherium consiste de dois elétrons presos na superfície de uma esfera de raio . Ele tem sido usado por Berry e colaboradores [1] para entender tantos sistemas fracamente e fortemente correlacionados e sugeri uma versão "alternativa" para a regra de Hund. Seidl estuda esse sistema no contexto da teoria do funcional da densidade(DFT) para desenvolver a nova funcionais correlaçõe dentro da conexão adiabática.[2]

    Definição e solução

    Hamiltoniano eletrônico em unidades atômicas, é
    onde  é a distância intereletrônica. Para os estados singletos, pode ser mostrado[3] que a função de onda satisfaz a equação de Schrödinger
    Introduzindo a variável adimensional , isso se torna uma função de Heun com pontos singulares em . Com base nas conhecidas soluções de Heun, buscamos funções de onda da forma
    e substituição na equação anterior produz arelação de recorrência
    com os valores iniciais . Assim, a condição de cúspide Kato é
    .
    A função de onda reduz para o polinomial
    (onde  o número de raízes entre  e ) se, e somente se, . Assim, a energia  é uma raiz da equação polinomial  (onde ) e o raio correspondente  é encontrado a partir da equação anterior, o que gera
     é a exata função de onda do -esimo estado excitado da simetria singleto S para o raio .
    Sabemos que a partir do trabalho de Loos e Gill que a energia HF do menor estado singleto S . Segue-se que a exata correlação energia para  é  que é muito maior do que a limitação da correlação das energias do íons como hélio () ou os átomos de Hooke (). Isso confirma a visão de que a correlação de elétron na superfície de uma esfera é qualitativamente diferente do que em três dimensões de espaço físico.








    Estados de Graceli de matéria, energias, momentuns, inércias, e entropias.


    Estados térmico.
    Estado quântico.
    De dilatação.
    De entropia.
    De potencia de entropia e relação com dilatação.
    De magnetismo [correntes, momentum e condutividades]..
    De eletricidade [correntes, momentum e condutividades].
    De condutividade.
    De mometum e fluxos variados.
    De potencial inercial da matéria e energia.
    De transformação.
    De comportamento de cargas e interações com elétrons.
    De emaranhamentos e transemaranhamentos.
    De paridades e transparidades.
    De radiação.
    Radioatividade.
    De radioisótopos.
    De relação entre radioatividade, radiação, eletromagnetismo e termoentropia.
    De capacidade e potencialidade de resistir a pressão, a capacidade de resistir a pressão e transformar em entropia e momentum.

    De resistir à temperaturas.
    E transformar em dilatação, interações entre partículas, energias e campos.
    Estado dos padrões de variações e efeitos variacionais.
    Estado de incerteza dos fenômenos e entre as suas interações.


    E outros estados de matéria, energia, momentum, tipos de inércia [como de inércia potencial de energias magnética, elétrica, forte e fraca, dinâmica, geométrica [côncava, convexa e plana] em sistema.


    E que todos estes tipos de estados tendem a ter ações de uns sobre os outros, formando um aglomerado de fenômenos de efeitos na produção de novas causas. E de efeitos variacionais de uns sobre os outros, ou seja, um sistema integrado.



    Sobre padrões de entropia.

    Mesmo havendo uma desordem, esta desordem segue alguns parâmetros futuros e que dependem de condições dos estados de Graceli, ou seja, a desordem segue alguns padrões e ordens conforme avança e passa por fases e agentes fenomênicos, estruturais e geométricos.


    Porem, a reversibilidade se torna impossível, aumenta a instabilidade e as incertezas de posição, intensidade, variações, efeitos e outros fenômenos conforme as próprias intensidades de dilatações, e agentes e estados envolvidos.


    Levando em consideração que mesmo havendo ordem não é possível a reversibilidade do estado e condições em que se encontravam a energia, matéria, momentum, inércias, dimensões, e outros agentes.


    A temperatura pode voltar ao seu lugar e ao seu ponto inicial, mas não as estruturas das partículas, as intensidades infinitésimas de padrões de energias, e nem o grau de oscilações que a energias, as interações, as transformações que passam estas partículas e suas energias, estruturas e interações, e as interações e intensidades de grau de variação de cada agente.


    Porem, a desordem é temporal, ou seja, com o passar do tempo outras ordens e padrões se afirmarão.


    Sendo que também a entropia varia conforme intensidade de instabilidade por tempo. E tempo por intensidade de instabilidade.


    Assim, segue efeitos variacionais e de incertezas por instabilidade de energia adicionada, e de tempo.


    Ou seja, uma grande instabilidade e desordem em pouco tempo vai levar a uma grande e instável por mais tempo uma entropia.


    Do que um grande tempo com pequena intensidade de instabilidade e energia adicionada num sistema ou numa variação térmica.


    Ou mesmo numa variação eletromagnética, ou mesmo na condutividade.


    Princípio tempo instabilidade de Graceli.

    Assim, a desordem acaba por encontrar uma ordem se não acontecer nenhuma instabilidade novamente. Pois, as partículas e energias tendem a se reorganizar novamente conforme o passar do tempo,  e esta reorganização segue um efeito progressivo em relação à desordem e tempo. Como os vistos acima.


    Ou seja, aquela organização anterior não vai mais acontecer, pois, segue o princípio da irreversibilidade, mas outras organizações se formarão conforme avança o tempo de estabilidade.


    as dimensões categorias podem ser divididas em cinco formas diversificadas.

    tipos, níveis, potenciais, tempo de ação, especificidades de transições de energias, de fenômenos, de estados de energias, físicos [estruturais], de fenômenos, estados quântico, e outros.



    paradox of the system of ten dimensions and categories of Graceli.



    a four-dimensional system can not define all the energies, changes of structures, states and phenomena within a structure, that is why there are ten or more dimensions, I have developed and I work with ten, but nature certainly goes beyond ten, with this we move to a decadimensional and categorial universe.



    that is, categories ground the variables of phenomena and their interactions and transformations.



    and with this we do not have a relationship with mass, but with structure, therefore, a structure carries with it much more than mass, since also mass is related to forces, inertia, resistances and energies.



    but structures are related to transitions of physical states, quantum, energies, phenomena, and others.



    as well as transitions of energies, phenomena, categories and dimensions.

    paradoxo do sistema de dez dimensões e categorias de Graceli.

    um sistema de quatro dimensões não tem como definir todas as energias, mudanças de estruturas, estados e fenômenos dentro de uma estrutura, por isto se tem dez ou mais dimensões, desenvolvi e trabalho com dez, mas a natureza com certeza vai alem das dez, com isto caminhamos para um universo decadimensional e categorial.

    ou seja, as categorias fundamentam as variáveis dos fenõmenos e suas interações e transformações.

    e com isto não se tem uma relação com massa, mas com estrutura, pois, uma estrutura carrega consigo muito mais do que massa, uma vez também que massa está relacionado com forças, inércia, resistências e energias.

    mas estruturas está relacionado com transições de estados físicos, quântico, de energias, de fenômenos, e outros.

    como também transições de energias, fenômenos, categorias e dimensões.







     = entropia reversível

    postulado categorial e decadimensional Graceli.

    TUDO QUE ESTÁ RELACIONADO COM ENERGIA, ESTRUTURAS, FENÔMENOS E DIMENSÕES ESTÁ INSERIDO NO SISTEMA DECADIMENSIONAL E CATEGORIAL GRACELI.


    todo sistema decadimensional e categorial é um sistema transcendente e indeterminado.
    matriz categorial Graceli.

    T l    T l     E l       Fl         dfG l   
    N l    El                 tf l
    P l    Ml                 tfefel 
    Ta l   Rl
             Ll
             D


    1] Cosmic space.
    2] Cosmic and quantum time.
    3] Structures.
    4] Energy.
    5] Phenomena.
    6] Potential.
    7] Phase transitions of physical [amorphous and crystalline] states and states of energies and phenomena of Graceli.
    8] Types and levels of magnetism [in paramagnetic, diamagnetic, ferromagnetic] and electricity, radioactivity [fissions and fusions], and light [laser, maser, incandescence, fluorescence, phosphorescence, and others.
    9] thermal specificity, other energies, and structure phenomena, and phase transitions.
    10] action time specificity in physical and quantum processes.




    Sistema decadimensional Graceli.

    1]Espaço cósmico.
    2]Tempo cósmico  e quântico.
    3]Estruturas.
    4]Energias.
    5]Fenômenos.
    6]Potenciais., e potenciais de campos, de energias, de transições de estruturas e estados físicos, quãntico,  e estados de fenômenos e estados de transições, transformações e decaimentos.
    7]Transições de fases de estados físicos [amorfos e cristalinos] e estados de energias e fenômenos de Graceli.
    8]Tipos e níveis de magnetismo [em paramagnéticos, diamagnético, ferromagnéticos] e eletricidade, radioatividade [fissões e fusões], e luz [laser, maser, incandescências, fluorescências, fosforescências, e outros.
    9] especificidade térmica, de outras energias, e fenômenos das estruturas, e transições de fases.
    10] especificidade de tempo de ações em processos físicos e quântico.


    T l    T l     E l       Fl         dfG l   
    N l    El                 tf l
    P l    Ml                 tfefel 
    Ta l   Rl
             Ll
             D


    Matriz categorial de Graceli.


    T l    T l     E l       Fl         dfG l   
    N l    El                 tf l
    P l    Ml                 tfefel 
    Ta l   Rl
             Ll
             Dl


    Tipos, níveis, potenciais, tempo de ação, temperatura, eletricidade, magnetismo, radioatividade, luminescências, dinâmicas, estruturas, fenômenos, transições de fenômenos e estados físicos, e estados de energias, dimensões fenomênicas de Graceli.

    [estruturas: isótopos, partículas, amorfos e cristalinos, paramagnéticos, dia, ferromagnéticos, e estados [físicos, quântico, de energias, de fenômenos, de transições, de interações, transformações e decaimentos, emissões e absorções, eletrostático, condutividade e fluidez]].
    trans-intermecânica de supercondutividade no sistema categorial de Graceli.

    EPG = d [hc] [T / IEEpei [pit] = [pTEMRLD] and [fao] [itd] [iicee] tetdvd [pe] cee [caG].]

    p it = potentials of interactions and transformations.
    Temperature divided by isotopes and physical states and potential states of energies and isotopes = emissions, random wave fluxes, ion interactions, charges and energies structures, tunnels and entanglements, transformations and decays, vibrations and dilations, electrostatic potential, conductivities, entropies and enthalpies. categories and agents of Graceli.

    h e = quantum index and speed of light.

    [pTEMRlD] = THERMAL, ELECTRICAL, MAGNETIC, RADIOACTIVE, Luminescence, DYNAMIC POTENTIAL] ..


    EPG = GRACELI POTENTIAL STATUS.

    [pTFE] = POTENCIAL DE TRANSIÇÕES DE FASES DE ESTADOS FÍSICOS E DE ENERGIAS E FANÔMENOS [TRANSIÇÕES DE GRACELI]

    , [pTEMRLD] [hc] [pI] [PF] [pIT][pTFE] [CG].

    sábado, 2 de março de 2019






    x
    sistema de dez dimensões de Graceli.
    x
    sistema de transições de estados, e estados  de Graceli, 
    x
    T l    T l     E l       Fl         dfG l   
    N l    El                 tf l
    P l    Ml                 tfefel 
    Ta l   Rl
             Ll
             D


    x
    sistema de dez dimensões de Graceli.
    x
    sistema de transições de estados, e estados  de Graceli, 
    x
    T l    T l     E l       Fl         dfG l   
    N l    El                 tf l
    P l    Ml                 tfefel 
    Ta l   Rl
             Ll
             D


    x
    sistema de dez dimensões de Graceli.
    x
    sistema de transições de estados, e estados  de Graceli, 
    x
    T l    T l     E l       Fl         dfG l   
    N l    El                 tf l
    P l    Ml                 tfefel 
    Ta l   Rl
             Ll
             D


    x
    sistema de dez dimensões de Graceli.
    x
    sistema de transições de estados, e estados  de Graceli, 
    x
    T l    T l     E l       Fl         dfG l   
    N l    El                 tf l
    P l    Ml                 tfefel 
    Ta l   Rl
             Ll
             D



     ou
    x
    sistema de dez dimensões de Graceli.
    x
    sistema de transições de estados, e estados  de Graceli, 
    x
    T l    T l     E l       Fl         dfG l   
    N l    El                 tf l
    P l    Ml                 tfefel 
    Ta l   Rl
             Ll
             D

    x
    sistema de dez dimensões de Graceli.
    x
    sistema de transições de estados, e estados  de Graceli, 
    x
    T l    T l     E l       Fl         dfG l   
    N l    El                 tf l
    P l    Ml                 tfefel 
    Ta l   Rl
             Ll
             D



    x
    sistema de dez dimensões de Graceli.
    x
    sistema de transições de estados, e estados  de Graceli, 
    x
    T l    T l     E l       Fl         dfG l   
    N l    El                 tf l
    P l    Ml                 tfefel 
    Ta l   Rl
             Ll
             D


    relação de Planck–Einstein[1][2][3] é também conhecida como relação de Einstein,[1][4][5] ou como relação de frequência-energia de Planck,[6] relação de Planck,[7] e equação de Planck.[8] A expressão fórmula de Planck[9] também pertence a esta lista, mas muitas vezes se refere à lei de Planck[10][11] Esses vários epônimos são usados de maneira esporádica. Referem-se a uma fórmula integral da mecânica quântica, que estabelece que a energia de um fóton E é proporcional à sua frequênciaν:
    constante de proporcionalidadeh, é conhecida como constante de Planck. Existem várias formas equivalentes da relação.
    A relação explica a natureza quantizada da luz, e desempenha um papel decisivo no entendimento de fenômenos como o efeito fotoelétrico, e a lei de Planck da radiação de corpo negro.
    Mais detalhes em: Postulado de Planck

      Formas espectrais

      A luz pode ser caracterizada usando várias quantidades espectrais, como a frequência νcomprimento de onda λnúmero de onda , e seus equivalentes angulares (frequência angular ωcomprimento de onda angular y, e número de onda angular k). Essas grandezas se relacionam pela equação
      então a relação de Planck pode ter as seguintes formas "padrão"
      assim como as seguintes formas 'angulares',
      As formas padrão fazem uso da constante de Planck h. As formas angulares fazem uso da constante reduzida de Planck ħ = h. Aqui, c é a velocidade da luz.

      Relação de de Broglie[editar | editar código-fonte]

      A relação de de Broglie,[5][12][13] também conhecida como relação momento–comprimento de onda de de Broglie,[6] generaliza a relação de Planck para ondas de matériaLouis de Broglie argumentou que se as partículas possuem natureza de onda, a relação E =  também se aplicaria para elas, e postulou que as partículas teriam um comprimento de onda igual a λ = hp. Combinando o postulado de de Broglie com a relação de Planck–Einstein resulta em
       ou
      A relação de de Broglie também é algumas vezes encontrada na forma vetorial
      onde p é o vetor momento, e k é o vetor de onda angular.

      Condição de frequência de Bohr[editar | editar código-fonte]

      A condição de frequência de Bohr estabelece que a frequência de um fóton absorvido ou emitido durante uma transição eletrônica relaciona-se à diferença de energia (ΔE) entre os dois níveis de energia envolvidos na transição:[14]
      Isso é uma consequência direta da relação de Planck–Einstein.












      Estados de Graceli de matéria, energias, momentuns, inércias, e entropias.


      Estados térmico.
      Estado quântico.
      De dilatação.
      De entropia.
      De potencia de entropia e relação com dilatação.
      De magnetismo [correntes, momentum e condutividades]..
      De eletricidade [correntes, momentum e condutividades].
      De condutividade.
      De mometum e fluxos variados.
      De potencial inercial da matéria e energia.
      De transformação.
      De comportamento de cargas e interações com elétrons.
      De emaranhamentos e transemaranhamentos.
      De paridades e transparidades.
      De radiação.
      Radioatividade.
      De radioisótopos.
      De relação entre radioatividade, radiação, eletromagnetismo e termoentropia.
      De capacidade e potencialidade de resistir a pressão, a capacidade de resistir a pressão e transformar em entropia e momentum.

      De resistir à temperaturas.
      E transformar em dilatação, interações entre partículas, energias e campos.
      Estado dos padrões de variações e efeitos variacionais.
      Estado de incerteza dos fenômenos e entre as suas interações.


      E outros estados de matéria, energia, momentum, tipos de inércia [como de inércia potencial de energias magnética, elétrica, forte e fraca, dinâmica, geométrica [côncava, convexa e plana] em sistema.


      E que todos estes tipos de estados tendem a ter ações de uns sobre os outros, formando um aglomerado de fenômenos de efeitos na produção de novas causas. E de efeitos variacionais de uns sobre os outros, ou seja, um sistema integrado.



      Sobre padrões de entropia.

      Mesmo havendo uma desordem, esta desordem segue alguns parâmetros futuros e que dependem de condições dos estados de Graceli, ou seja, a desordem segue alguns padrões e ordens conforme avança e passa por fases e agentes fenomênicos, estruturais e geométricos.


      Porem, a reversibilidade se torna impossível, aumenta a instabilidade e as incertezas de posição, intensidade, variações, efeitos e outros fenômenos conforme as próprias intensidades de dilatações, e agentes e estados envolvidos.


      Levando em consideração que mesmo havendo ordem não é possível a reversibilidade do estado e condições em que se encontravam a energia, matéria, momentum, inércias, dimensões, e outros agentes.


      A temperatura pode voltar ao seu lugar e ao seu ponto inicial, mas não as estruturas das partículas, as intensidades infinitésimas de padrões de energias, e nem o grau de oscilações que a energias, as interações, as transformações que passam estas partículas e suas energias, estruturas e interações, e as interações e intensidades de grau de variação de cada agente.


      Porem, a desordem é temporal, ou seja, com o passar do tempo outras ordens e padrões se afirmarão.


      Sendo que também a entropia varia conforme intensidade de instabilidade por tempo. E tempo por intensidade de instabilidade.


      Assim, segue efeitos variacionais e de incertezas por instabilidade de energia adicionada, e de tempo.


      Ou seja, uma grande instabilidade e desordem em pouco tempo vai levar a uma grande e instável por mais tempo uma entropia.


      Do que um grande tempo com pequena intensidade de instabilidade e energia adicionada num sistema ou numa variação térmica.


      Ou mesmo numa variação eletromagnética, ou mesmo na condutividade.


      Princípio tempo instabilidade de Graceli.

      Assim, a desordem acaba por encontrar uma ordem se não acontecer nenhuma instabilidade novamente. Pois, as partículas e energias tendem a se reorganizar novamente conforme o passar do tempo,  e esta reorganização segue um efeito progressivo em relação à desordem e tempo. Como os vistos acima.


      Ou seja, aquela organização anterior não vai mais acontecer, pois, segue o princípio da irreversibilidade, mas outras organizações se formarão conforme avança o tempo de estabilidade.


      as dimensões categorias podem ser divididas em cinco formas diversificadas.

      tipos, níveis, potenciais, tempo de ação, especificidades de transições de energias, de fenômenos, de estados de energias, físicos [estruturais], de fenômenos, estados quântico, e outros.



      paradox of the system of ten dimensions and categories of Graceli.



      a four-dimensional system can not define all the energies, changes of structures, states and phenomena within a structure, that is why there are ten or more dimensions, I have developed and I work with ten, but nature certainly goes beyond ten, with this we move to a decadimensional and categorial universe.



      that is, categories ground the variables of phenomena and their interactions and transformations.



      and with this we do not have a relationship with mass, but with structure, therefore, a structure carries with it much more than mass, since also mass is related to forces, inertia, resistances and energies.



      but structures are related to transitions of physical states, quantum, energies, phenomena, and others.



      as well as transitions of energies, phenomena, categories and dimensions.

      paradoxo do sistema de dez dimensões e categorias de Graceli.

      um sistema de quatro dimensões não tem como definir todas as energias, mudanças de estruturas, estados e fenômenos dentro de uma estrutura, por isto se tem dez ou mais dimensões, desenvolvi e trabalho com dez, mas a natureza com certeza vai alem das dez, com isto caminhamos para um universo decadimensional e categorial.

      ou seja, as categorias fundamentam as variáveis dos fenõmenos e suas interações e transformações.

      e com isto não se tem uma relação com massa, mas com estrutura, pois, uma estrutura carrega consigo muito mais do que massa, uma vez também que massa está relacionado com forças, inércia, resistências e energias.

      mas estruturas está relacionado com transições de estados físicos, quântico, de energias, de fenômenos, e outros.

      como também transições de energias, fenômenos, categorias e dimensões.







       = entropia reversível

      postulado categorial e decadimensional Graceli.

      TUDO QUE ESTÁ RELACIONADO COM ENERGIA, ESTRUTURAS, FENÔMENOS E DIMENSÕES ESTÁ INSERIDO NO SISTEMA DECADIMENSIONAL E CATEGORIAL GRACELI.


      todo sistema decadimensional e categorial é um sistema transcendente e indeterminado.
      matriz categorial Graceli.

      T l    T l     E l       Fl         dfG l   
      N l    El                 tf l
      P l    Ml                 tfefel 
      Ta l   Rl
               Ll
               D


      1] Cosmic space.
      2] Cosmic and quantum time.
      3] Structures.
      4] Energy.
      5] Phenomena.
      6] Potential.
      7] Phase transitions of physical [amorphous and crystalline] states and states of energies and phenomena of Graceli.
      8] Types and levels of magnetism [in paramagnetic, diamagnetic, ferromagnetic] and electricity, radioactivity [fissions and fusions], and light [laser, maser, incandescence, fluorescence, phosphorescence, and others.
      9] thermal specificity, other energies, and structure phenomena, and phase transitions.
      10] action time specificity in physical and quantum processes.




      Sistema decadimensional Graceli.

      1]Espaço cósmico.
      2]Tempo cósmico  e quântico.
      3]Estruturas.
      4]Energias.
      5]Fenômenos.
      6]Potenciais., e potenciais de campos, de energias, de transições de estruturas e estados físicos, quãntico,  e estados de fenômenos e estados de transições, transformações e decaimentos.
      7]Transições de fases de estados físicos [amorfos e cristalinos] e estados de energias e fenômenos de Graceli.
      8]Tipos e níveis de magnetismo [em paramagnéticos, diamagnético, ferromagnéticos] e eletricidade, radioatividade [fissões e fusões], e luz [laser, maser, incandescências, fluorescências, fosforescências, e outros.
      9] especificidade térmica, de outras energias, e fenômenos das estruturas, e transições de fases.
      10] especificidade de tempo de ações em processos físicos e quântico.


      T l    T l     E l       Fl         dfG l   
      N l    El                 tf l
      P l    Ml                 tfefel 
      Ta l   Rl
               Ll
               D


      Matriz categorial de Graceli.


      T l    T l     E l       Fl         dfG l   
      N l    El                 tf l
      P l    Ml                 tfefel 
      Ta l   Rl
               Ll
               Dl


      Tipos, níveis, potenciais, tempo de ação, temperatura, eletricidade, magnetismo, radioatividade, luminescências, dinâmicas, estruturas, fenômenos, transições de fenômenos e estados físicos, e estados de energias, dimensões fenomênicas de Graceli.

      [estruturas: isótopos, partículas, amorfos e cristalinos, paramagnéticos, dia, ferromagnéticos, e estados [físicos, quântico, de energias, de fenômenos, de transições, de interações, transformações e decaimentos, emissões e absorções, eletrostático, condutividade e fluidez]].
      trans-intermecânica de supercondutividade no sistema categorial de Graceli.

      EPG = d [hc] [T / IEEpei [pit] = [pTEMRLD] and [fao] [itd] [iicee] tetdvd [pe] cee [caG].]

      p it = potentials of interactions and transformations.
      Temperature divided by isotopes and physical states and potential states of energies and isotopes = emissions, random wave fluxes, ion interactions, charges and energies structures, tunnels and entanglements, transformations and decays, vibrations and dilations, electrostatic potential, conductivities, entropies and enthalpies. categories and agents of Graceli.

      h e = quantum index and speed of light.

      [pTEMRlD] = THERMAL, ELECTRICAL, MAGNETIC, RADIOACTIVE, Luminescence, DYNAMIC POTENTIAL] ..


      EPG = GRACELI POTENTIAL STATUS.

      [pTFE] = POTENCIAL DE TRANSIÇÕES DE FASES DE ESTADOS FÍSICOS E DE ENERGIAS E FANÔMENOS [TRANSIÇÕES DE GRACELI]

      , [pTEMRLD] [hc] [pI] [PF] [pIT][pTFE] [CG].

      terça-feira, 26 de fevereiro de 2019







      x
      decadimensional
      x
      T l    T l     E l       Fl         dfG l   
      N l    El                 tf l
      P l    Ml                 tfefel 
      Ta l   Rl
               Ll
               D





      x
      decadimensional
      x
      T l    T l     E l       Fl         dfG l   
      N l    El                 tf l
      P l    Ml                 tfefel 
      Ta l   Rl
               Ll
               D




      Não localidade, em mecânica quântica, se refere à propriedade de estados quânticos entrelaçados na qual dois estados entrelaçados "colapsam" simultaneamente no ato de medição de um dos componentes emaranhados, independente da separação espacial entre os dois estados. Essa "estranha ação a distância" é o conteúdo do Teorema de Belle do paradoxo EPR.

      Em teoria de campos, uma Lagrangiana não local é o funcional  que contém termos que são não locais em campos , isto é, que não são polinômios ou funções de campos ou suas derivadas calculadas em um ponto do espaço de parâmetros dinâmicos (exemploː espaço-tempo). Exemplos de tais Lagragianas não locais:
      Ações obtidas de Lagragianas não locais são chamadas de ações não locais. As ações que aparecem em teorias físicas, como no Modelo Padrão, são ações locais. Ações não locais fazem parte de teorias que tentam ir além do Modelo Padrão, e também aparecem teorias de campo efetivo. Não localização de uma ação local é um aspecto essencial em alguns procedimentos de regularização.











      Estados de Graceli de matéria, energias, momentuns, inércias, e entropias.


      Estados térmico.
      Estado quântico.
      De dilatação.
      De entropia.
      De potencia de entropia e relação com dilatação.
      De magnetismo [correntes, momentum e condutividades]..
      De eletricidade [correntes, momentum e condutividades].
      De condutividade.
      De mometum e fluxos variados.
      De potencial inercial da matéria e energia.
      De transformação.
      De comportamento de cargas e interações com elétrons.
      De emaranhamentos e transemaranhamentos.
      De paridades e transparidades.
      De radiação.
      Radioatividade.
      De radioisótopos.
      De relação entre radioatividade, radiação, eletromagnetismo e termoentropia.
      De capacidade e potencialidade de resistir a pressão, a capacidade de resistir a pressão e transformar em entropia e momentum.

      De resistir à temperaturas.
      E transformar em dilatação, interações entre partículas, energias e campos.
      Estado dos padrões de variações e efeitos variacionais.
      Estado de incerteza dos fenômenos e entre as suas interações.


      E outros estados de matéria, energia, momentum, tipos de inércia [como de inércia potencial de energias magnética, elétrica, forte e fraca, dinâmica, geométrica [côncava, convexa e plana] em sistema.


      E que todos estes tipos de estados tendem a ter ações de uns sobre os outros, formando um aglomerado de fenômenos de efeitos na produção de novas causas. E de efeitos variacionais de uns sobre os outros, ou seja, um sistema integrado.



      Sobre padrões de entropia.

      Mesmo havendo uma desordem, esta desordem segue alguns parâmetros futuros e que dependem de condições dos estados de Graceli, ou seja, a desordem segue alguns padrões e ordens conforme avança e passa por fases e agentes fenomênicos, estruturais e geométricos.


      Porem, a reversibilidade se torna impossível, aumenta a instabilidade e as incertezas de posição, intensidade, variações, efeitos e outros fenômenos conforme as próprias intensidades de dilatações, e agentes e estados envolvidos.


      Levando em consideração que mesmo havendo ordem não é possível a reversibilidade do estado e condições em que se encontravam a energia, matéria, momentum, inércias, dimensões, e outros agentes.


      A temperatura pode voltar ao seu lugar e ao seu ponto inicial, mas não as estruturas das partículas, as intensidades infinitésimas de padrões de energias, e nem o grau de oscilações que a energias, as interações, as transformações que passam estas partículas e suas energias, estruturas e interações, e as interações e intensidades de grau de variação de cada agente.


      Porem, a desordem é temporal, ou seja, com o passar do tempo outras ordens e padrões se afirmarão.


      Sendo que também a entropia varia conforme intensidade de instabilidade por tempo. E tempo por intensidade de instabilidade.


      Assim, segue efeitos variacionais e de incertezas por instabilidade de energia adicionada, e de tempo.


      Ou seja, uma grande instabilidade e desordem em pouco tempo vai levar a uma grande e instável por mais tempo uma entropia.


      Do que um grande tempo com pequena intensidade de instabilidade e energia adicionada num sistema ou numa variação térmica.


      Ou mesmo numa variação eletromagnética, ou mesmo na condutividade.


      Princípio tempo instabilidade de Graceli.

      Assim, a desordem acaba por encontrar uma ordem se não acontecer nenhuma instabilidade novamente. Pois, as partículas e energias tendem a se reorganizar novamente conforme o passar do tempo,  e esta reorganização segue um efeito progressivo em relação à desordem e tempo. Como os vistos acima.


      Ou seja, aquela organização anterior não vai mais acontecer, pois, segue o princípio da irreversibilidade, mas outras organizações se formarão conforme avança o tempo de estabilidade.


      as dimensões categorias podem ser divididas em cinco formas diversificadas.

      tipos, níveis, potenciais, tempo de ação, especificidades de transições de energias, de fenômenos, de estados de energias, físicos [estruturais], de fenômenos, estados quântico, e outros.



      paradox of the system of ten dimensions and categories of Graceli.



      a four-dimensional system can not define all the energies, changes of structures, states and phenomena within a structure, that is why there are ten or more dimensions, I have developed and I work with ten, but nature certainly goes beyond ten, with this we move to a decadimensional and categorial universe.



      that is, categories ground the variables of phenomena and their interactions and transformations.



      and with this we do not have a relationship with mass, but with structure, therefore, a structure carries with it much more than mass, since also mass is related to forces, inertia, resistances and energies.



      but structures are related to transitions of physical states, quantum, energies, phenomena, and others.



      as well as transitions of energies, phenomena, categories and dimensions.

      paradoxo do sistema de dez dimensões e categorias de Graceli.

      um sistema de quatro dimensões não tem como definir todas as energias, mudanças de estruturas, estados e fenômenos dentro de uma estrutura, por isto se tem dez ou mais dimensões, desenvolvi e trabalho com dez, mas a natureza com certeza vai alem das dez, com isto caminhamos para um universo decadimensional e categorial.

      ou seja, as categorias fundamentam as variáveis dos fenõmenos e suas interações e transformações.

      e com isto não se tem uma relação com massa, mas com estrutura, pois, uma estrutura carrega consigo muito mais do que massa, uma vez também que massa está relacionado com forças, inércia, resistências e energias.

      mas estruturas está relacionado com transições de estados físicos, quântico, de energias, de fenômenos, e outros.

      como também transições de energias, fenômenos, categorias e dimensões.







       = entropia reversível

      postulado categorial e decadimensional Graceli.

      TUDO QUE ESTÁ RELACIONADO COM ENERGIA, ESTRUTURAS, FENÔMENOS E DIMENSÕES ESTÁ INSERIDO NO SISTEMA DECADIMENSIONAL E CATEGORIAL GRACELI.


      todo sistema decadimensional e categorial é um sistema transcendente e indeterminado.
      matriz categorial Graceli.

      T l    T l     E l       Fl         dfG l   
      N l    El                 tf l
      P l    Ml                 tfefel 
      Ta l   Rl
               Ll
               D


      1] Cosmic space.
      2] Cosmic and quantum time.
      3] Structures.
      4] Energy.
      5] Phenomena.
      6] Potential.
      7] Phase transitions of physical [amorphous and crystalline] states and states of energies and phenomena of Graceli.
      8] Types and levels of magnetism [in paramagnetic, diamagnetic, ferromagnetic] and electricity, radioactivity [fissions and fusions], and light [laser, maser, incandescence, fluorescence, phosphorescence, and others.
      9] thermal specificity, other energies, and structure phenomena, and phase transitions.
      10] action time specificity in physical and quantum processes.




      Sistema decadimensional Graceli.

      1]Espaço cósmico.
      2]Tempo cósmico  e quântico.
      3]Estruturas.
      4]Energias.
      5]Fenômenos.
      6]Potenciais., e potenciais de campos, de energias, de transições de estruturas e estados físicos, quãntico,  e estados de fenômenos e estados de transições, transformações e decaimentos.
      7]Transições de fases de estados físicos [amorfos e cristalinos] e estados de energias e fenômenos de Graceli.
      8]Tipos e níveis de magnetismo [em paramagnéticos, diamagnético, ferromagnéticos] e eletricidade, radioatividade [fissões e fusões], e luz [laser, maser, incandescências, fluorescências, fosforescências, e outros.
      9] especificidade térmica, de outras energias, e fenômenos das estruturas, e transições de fases.
      10] especificidade de tempo de ações em processos físicos e quântico.


      T l    T l     E l       Fl         dfG l   
      N l    El                 tf l
      P l    Ml                 tfefel 
      Ta l   Rl
               Ll
               D


      Matriz categorial de Graceli.


      T l    T l     E l       Fl         dfG l   
      N l    El                 tf l
      P l    Ml                 tfefel 
      Ta l   Rl
               Ll
               Dl


      Tipos, níveis, potenciais, tempo de ação, temperatura, eletricidade, magnetismo, radioatividade, luminescências, dinâmicas, estruturas, fenômenos, transições de fenômenos e estados físicos, e estados de energias, dimensões fenomênicas de Graceli.

      [estruturas: isótopos, partículas, amorfos e cristalinos, paramagnéticos, dia, ferromagnéticos, e estados [físicos, quântico, de energias, de fenômenos, de transições, de interações, transformações e decaimentos, emissões e absorções, eletrostático, condutividade e fluidez]].
      trans-intermecânica de supercondutividade no sistema categorial de Graceli.

      EPG = d [hc] [T / IEEpei [pit] = [pTEMRLD] and [fao] [itd] [iicee] tetdvd [pe] cee [caG].]

      p it = potentials of interactions and transformations.
      Temperature divided by isotopes and physical states and potential states of energies and isotopes = emissions, random wave fluxes, ion interactions, charges and energies structures, tunnels and entanglements, transformations and decays, vibrations and dilations, electrostatic potential, conductivities, entropies and enthalpies. categories and agents of Graceli.

      h e = quantum index and speed of light.

      [pTEMRlD] = THERMAL, ELECTRICAL, MAGNETIC, RADIOACTIVE, Luminescence, DYNAMIC POTENTIAL] ..


      EPG = GRACELI POTENTIAL STATUS.

      [pTFE] = POTENCIAL DE TRANSIÇÕES DE FASES DE ESTADOS FÍSICOS E DE ENERGIAS E FANÔMENOS [TRANSIÇÕES DE GRACELI]

      , [pTEMRLD] [hc] [pI] [PF] [pIT][pTFE] [CG].

      sábado, 23 de fevereiro de 2019



      todas as condições de

      Harmônicos esféricos estão relacionados no sistema decadimensional e categorial Graceli, vejamos alguns:



      x
      decadimensional
      x
      T l    T l     E l       Fl         dfG l   
      N l    El                 tf l
      P l    Ml                 tfefel 
      Ta l   Rl
               Ll
               D




      x
      decadimensional
      x
      T l    T l     E l       Fl         dfG l   
      N l    El                 tf l
      P l    Ml                 tfefel 
      Ta l   Rl
               Ll
               D



      x
      decadimensional
      x
      T l    T l     E l       Fl         dfG l   
      N l    El                 tf l
      P l    Ml                 tfefel 
      Ta l   Rl
               Ll
               D



      x
      decadimensional
      x
      T l    T l     E l       Fl         dfG l   
      N l    El                 tf l
      P l    Ml                 tfefel 
      Ta l   Rl
               Ll
               D



      Representações visuais dos primeiros harmônicos esféricos. Partes em azul e amarelo representam, respectivamente, as regiões nas quais a função é positiva e negativa.
      Em matemática, os harmónicos esféricos são funções harmónicas que representam a variação espacial de um conjunto ortogonal de soluções da equação de Laplace, quando a solução é expressa em coordenadas esféricas.
      Os harmónicos esféricos são importantes em muitas aplicações teóricas e práticas, particularmente em física atómica (uma vez que a função de onda do electrão contém harmónicos esféricos) e na teoria do potencial, tanto no campo gravitacionalcomo na eletrostática.

        Introdução

        Harmónicos esféricos de variável real Ylm, para l =0,...,4 (de cima para baixo) e m = 0,...,4 (da esquerda para a direita). Os harmónicos Yl-m com m negativo são idênticos, mas com uma rotação de 90º/m em torno do eixo z em relação aos harmónicos positivos.
        equação de Laplace em coordenadas esféricas é dada por:
        (Ver também Nabla e laplaciano em coordenadas esféricas). Se nesta expressão considera-se soluções específicas da forma , a parte angular Y é chamada harmónico esférico e satisfaz a relação
        Se, por sua vez, utiliza-se o método de separação de variáveis para esta equação, pode-se ver que a equação acima admite soluções periódicas nas duas coordenadas angulares (l é um inteiro). Logo, a solução periódica do sistema anterior depende de dois inteiros (l, m) e é dada em termos de funções trigonométricas e dos polinômios associados de Legendre:
        Onde:  é chamada de função harmónica esférica de grau  e ordem  é o polinómio associado de Legendre é uma constante de normalização; e  e  representam os parâmetros angulares (respectivamente, o ângulo azimutal ou colatitude e o ângulo polar ou longitude).
        As coordenadas esféricas utilizadas neste artigo são consistentes com àquelas usadas pelos físicos, mas diferem das utilizadas pelos matemáticos (ver coordenadas esféricas). Em particular, a colatitude , ou ângulo polar, assume valores de  e a longitude , ou azimute, está na faixa de . Portanto,  é nulo no Pólo Norte,  no Equador e  no Pólo Sul.
        Quando a equação de Laplace é resolvida em coordenadas esféricas, as condições de periodicidade na fronteira da coordenada  e as condições de regularidades nos "Pólos Norte e sul" da esfera condizem com o que foi dito que os números l e m necessários devem ser inteiros que satisfazem  e .

        Normalização[editar | editar código-fonte]

        Há várias normalizações utilizadas para as funções harmónicas esféricas. Em física e sismologia essas funções são geralmente definidas como
        onde
        Estas funções são ortonormalizadas,
        ,
        onde δaa = 1, δab = 0 se a ≠ b (ver delta de Kronecker). Nas áreas de geodésia e análise espectral utiliza-se
        que possui um termo linear
        .
        No magnetismo, no entanto, usa-se os harmónicos de Schmidt semi-normalizados,
        que possuem a seguinte normalização:
        .
        Utilizando a identidade (ver funções associadas de Legendre)
        pode-se demonstrar que todas as funções harmónicas esféricas normalizadas acima satisfazem
        ,
        onde o símbolo * significa conjugação complexa.

        Convenção de fase de Condon-Shortley[editar | editar código-fonte]

        Um forte motivo para uma confusão com a definição de harmónicos esféricos é o fator de fase , normalmente identificado como a fase de Condon-Shortley na literatura quântica. Na mecânica quântica, é uma prática usual incluir este fator de fase na definição das funções associadas de Legendre, ou anexá-lo à definição de funções harmónicas esféricas. Não há nenhuma exigência da utilização da fase de Condon-Shortley na definição de funções harmónicas esféricas, mas se ela for incluída, então algumas operações no domínio da mecânica quântica serão mais simples. No magnetismo e na geodésia, ao contrário, nunca incluiu-se o fator de fase Condon-Shortley na definição dos harmónicos esféricos.

        Expansão em harmónicos esféricos[editar | editar código-fonte]

        Os harmónicos esféricos formam um conjunto completo ortonormal de funções e, portanto, formam um espaço vetorial análogo aos vetores unitários da base. Na esfera unitária, todas as funções de quadrado integrável podem, portanto, ser expandidas como uma combinação linear de:
        .
        Essa expansão é exata sempre que  estende-se até o infinito. Haverá um erro de truncamento ao limitar a soma sobre  numa largura de banda finita . Os coeficientes da expansão  podem ser obtidos multiplicando-se a equação pelo conjugado complexo dos harmónicos esféricos, integrando-se sobre um ângulo sólido  e usando-se as relações de ortogonalidade acima. No caso de harmónicos ortonormalizados, obtemos
        .
        Um conjunto alternativo de harmónicos esféricos para funções reais pode ser obtido a partir do conjunto
        Estas funções têm as mesmas propriedades que as funções de normalização complexas dadas anteriormente. Nesta forma, uma função real integrável pode ser expressa como uma soma infinita de harmónicos esféricos
        .

        Harmónicos esféricos em física[editar | editar código-fonte]

        Seguem-se algumas aplicações dos harmónicos esféricos na física, tanto na eletrostática como na mecânica quântica.

        Harmónicos esféricos na eletrostática[editar | editar código-fonte]

        O átomo de hidrogênio[editar | editar código-fonte]

        Ver artigo principal: Átomo de Hidrogênio
        O modelo quântico moderno do átomo de hidrogênio assume o elétron em um estado constante de energia tem sua posição distribuída ao redor do núcleo atômico como uma distribuição de probabilidades, cuja variação angular é dada por um harmónico esférico.

        Análise espectral[editar | editar código-fonte]

        A potência total de uma função  é definida na linguagem de processamento de sinais eletrônicos como sendo a integral do quadrado da função dividida pela área varrida por ela. Usando as propriedades de ortonormalização de funções harmónicas esféricas de potência real unitária, é fácil verificar que a potência total de uma função definida na esfera unitária está relacionada aos seus coeficientes espectrais através de uma generalização do teorema de Parseval:
        ,
        onde
        é definido como o espectro de potência angular. Da mesma forma, pode-se definir a potência cruzada entre duas funções como
        ,
        onde
        é definido como o espectro cruzado neste caso. Se as funções  e  possuem valor médio igual a zero (ou seja, com coeficientes espectrais  e  nulos), então  e  representam as contribuições para a variância e covariância da função para , respectivamente. É comum que o espectro de potência cruzado seja aproximado por uma lei de potências do tipo
        .
        Quando , o espectro é "branco", pois cada nível tem potências iguais. Quando , o espectro é chamado de "vermelho", porque não há mais energia nos níveis mais baixos com comprimentos de onda mais longos do que nos níveis mais elevados. Finalmente, quando , o espectro é chamado de "azul".

        Teorema da adição[editar | editar código-fonte]

        Um resultado matemático de grande interesse e utilidade é chamado teorema da adição para harmónicos esféricos. Se dois vetores r e r' tem coordenadas esféricas  e , respectivamente, o ângulo  entre eles é dado pela expressão
        .
        O teorema da adição expressa um polinômio de Legendre de ordem  no ângulo  em termos de produtos de dois harmónicos esféricos com coordenadas angulares  e :
        .
        Esta expressão é válida tanto para harmónicos reais como complexos. Entretanto, deve-se ressaltar que a fórmula apresentada anteriormente é válida apenas para harmónicos esféricos ortonormalizados. Harmónicos de potência unitária são necessários para eliminar o fator  da expressão anterior.

        Visualizando os harmónicos esféricos[editar | editar código-fonte]

        Representação esquemática de Ylm sobre a esfera unitária. Ylm é igual a 0 ao longo de m círculos que passam pelos polos e ao longo de l-m círculos de mesma latitude. A função muda de sinal cada vez que cruza uma dessas linhas.
        A função harmónica esférica real Y32 mostrada ao longo de quatro cortes.
        Os harmónicos esféricos são facilmente visualizados através da contagem do número de cruzamentos que ambos estão na direção das coordenadas  e . Para obter a orientação sobre , as funções associadas de Legendre possuem zeros, enquanto que na coordenada  as funções trigonométricas seno e cosseno possuem  zeros.
        Quando o harmónico esférico de ordem  é nulo, as funções harmónicas esféricas não dependem de , e diz-se que a função é zonal. Quando , não existem zeros na direção , e diz-se que a função é setorial. Nos outros casos, as funções formam um padrão em xadrez sobre a esfera.

        Expressões analíticas para os primeiros harmónicos esféricos[editar | editar código-fonte]

        Eis as expressões analíticas dos primeiros harmónicos esféricos ortonormalizados, com a convenção de fase de Condon-Shortley:
        Ver também: [[[[Tabela de harmónicos esféricos até Y10]]]]

        Teoria matemática geral[editar | editar código-fonte]

        O conjunto dos harmónicos esféricos pode ser visto como uma representação da simetria do grupo das rotações em torno de um ponto SO(3) e das aplicações universais SU(2). Portanto, ele capta a simetria da esfera em duas dimensões. Cada grupo de harmónicos esféricos, com um dado valor do parâmetro l leva a uma representação diferente irredutível do grupo SO(3).
        Além disso, a área é equivalente à esfera de Riemann. O conjunto completo das simetrias da esfera de Riemann é descrito pelo grupo das transformações de Möbius PSL(2,C), que é isomorfo ao grupo de Lie real chamado grupo de Lorentz. O análogo dos harmónicos esféricos em relação ao grupo de Lorentz é a série hipergeométrica; na verdade, os harmónicos esféricos podem ser reescritos em termos da série hipergeométrica, já que SO(3) é um subgrupo de PSL(2,C).
        Mais especificamente, pode-se generalizar a série hipergeométrica para descrever as simetrias de qualquer espaço de simetria. Em particular, a série hipergeométrica pode ser estendida para todos os grupos de Lie.[1][2][3][4]









        Estados de Graceli de matéria, energias, momentuns, inércias, e entropias.


        Estados térmico.
        Estado quântico.
        De dilatação.
        De entropia.
        De potencia de entropia e relação com dilatação.
        De magnetismo [correntes, momentum e condutividades]..
        De eletricidade [correntes, momentum e condutividades].
        De condutividade.
        De mometum e fluxos variados.
        De potencial inercial da matéria e energia.
        De transformação.
        De comportamento de cargas e interações com elétrons.
        De emaranhamentos e transemaranhamentos.
        De paridades e transparidades.
        De radiação.
        Radioatividade.
        De radioisótopos.
        De relação entre radioatividade, radiação, eletromagnetismo e termoentropia.
        De capacidade e potencialidade de resistir a pressão, a capacidade de resistir a pressão e transformar em entropia e momentum.

        De resistir à temperaturas.
        E transformar em dilatação, interações entre partículas, energias e campos.
        Estado dos padrões de variações e efeitos variacionais.
        Estado de incerteza dos fenômenos e entre as suas interações.


        E outros estados de matéria, energia, momentum, tipos de inércia [como de inércia potencial de energias magnética, elétrica, forte e fraca, dinâmica, geométrica [côncava, convexa e plana] em sistema.


        E que todos estes tipos de estados tendem a ter ações de uns sobre os outros, formando um aglomerado de fenômenos de efeitos na produção de novas causas. E de efeitos variacionais de uns sobre os outros, ou seja, um sistema integrado.



        Sobre padrões de entropia.

        Mesmo havendo uma desordem, esta desordem segue alguns parâmetros futuros e que dependem de condições dos estados de Graceli, ou seja, a desordem segue alguns padrões e ordens conforme avança e passa por fases e agentes fenomênicos, estruturais e geométricos.


        Porem, a reversibilidade se torna impossível, aumenta a instabilidade e as incertezas de posição, intensidade, variações, efeitos e outros fenômenos conforme as próprias intensidades de dilatações, e agentes e estados envolvidos.


        Levando em consideração que mesmo havendo ordem não é possível a reversibilidade do estado e condições em que se encontravam a energia, matéria, momentum, inércias, dimensões, e outros agentes.


        A temperatura pode voltar ao seu lugar e ao seu ponto inicial, mas não as estruturas das partículas, as intensidades infinitésimas de padrões de energias, e nem o grau de oscilações que a energias, as interações, as transformações que passam estas partículas e suas energias, estruturas e interações, e as interações e intensidades de grau de variação de cada agente.


        Porem, a desordem é temporal, ou seja, com o passar do tempo outras ordens e padrões se afirmarão.


        Sendo que também a entropia varia conforme intensidade de instabilidade por tempo. E tempo por intensidade de instabilidade.


        Assim, segue efeitos variacionais e de incertezas por instabilidade de energia adicionada, e de tempo.


        Ou seja, uma grande instabilidade e desordem em pouco tempo vai levar a uma grande e instável por mais tempo uma entropia.


        Do que um grande tempo com pequena intensidade de instabilidade e energia adicionada num sistema ou numa variação térmica.


        Ou mesmo numa variação eletromagnética, ou mesmo na condutividade.


        Princípio tempo instabilidade de Graceli.

        Assim, a desordem acaba por encontrar uma ordem se não acontecer nenhuma instabilidade novamente. Pois, as partículas e energias tendem a se reorganizar novamente conforme o passar do tempo,  e esta reorganização segue um efeito progressivo em relação à desordem e tempo. Como os vistos acima.


        Ou seja, aquela organização anterior não vai mais acontecer, pois, segue o princípio da irreversibilidade, mas outras organizações se formarão conforme avança o tempo de estabilidade.


        as dimensões categorias podem ser divididas em cinco formas diversificadas.

        tipos, níveis, potenciais, tempo de ação, especificidades de transições de energias, de fenômenos, de estados de energias, físicos [estruturais], de fenômenos, estados quântico, e outros.



        paradox of the system of ten dimensions and categories of Graceli.



        a four-dimensional system can not define all the energies, changes of structures, states and phenomena within a structure, that is why there are ten or more dimensions, I have developed and I work with ten, but nature certainly goes beyond ten, with this we move to a decadimensional and categorial universe.



        that is, categories ground the variables of phenomena and their interactions and transformations.



        and with this we do not have a relationship with mass, but with structure, therefore, a structure carries with it much more than mass, since also mass is related to forces, inertia, resistances and energies.



        but structures are related to transitions of physical states, quantum, energies, phenomena, and others.



        as well as transitions of energies, phenomena, categories and dimensions.

        paradoxo do sistema de dez dimensões e categorias de Graceli.

        um sistema de quatro dimensões não tem como definir todas as energias, mudanças de estruturas, estados e fenômenos dentro de uma estrutura, por isto se tem dez ou mais dimensões, desenvolvi e trabalho com dez, mas a natureza com certeza vai alem das dez, com isto caminhamos para um universo decadimensional e categorial.

        ou seja, as categorias fundamentam as variáveis dos fenõmenos e suas interações e transformações.

        e com isto não se tem uma relação com massa, mas com estrutura, pois, uma estrutura carrega consigo muito mais do que massa, uma vez também que massa está relacionado com forças, inércia, resistências e energias.

        mas estruturas está relacionado com transições de estados físicos, quântico, de energias, de fenômenos, e outros.

        como também transições de energias, fenômenos, categorias e dimensões.







         = entropia reversível

        postulado categorial e decadimensional Graceli.

        TUDO QUE ESTÁ RELACIONADO COM ENERGIA, ESTRUTURAS, FENÔMENOS E DIMENSÕES ESTÁ INSERIDO NO SISTEMA DECADIMENSIONAL E CATEGORIAL GRACELI.


        todo sistema decadimensional e categorial é um sistema transcendente e indeterminado.
        matriz categorial Graceli.

        T l    T l     E l       Fl         dfG l   
        N l    El                 tf l
        P l    Ml                 tfefel 
        Ta l   Rl
                 Ll
                 D


        1] Cosmic space.
        2] Cosmic and quantum time.
        3] Structures.
        4] Energy.
        5] Phenomena.
        6] Potential.
        7] Phase transitions of physical [amorphous and crystalline] states and states of energies and phenomena of Graceli.
        8] Types and levels of magnetism [in paramagnetic, diamagnetic, ferromagnetic] and electricity, radioactivity [fissions and fusions], and light [laser, maser, incandescence, fluorescence, phosphorescence, and others.
        9] thermal specificity, other energies, and structure phenomena, and phase transitions.
        10] action time specificity in physical and quantum processes.




        Sistema decadimensional Graceli.

        1]Espaço cósmico.
        2]Tempo cósmico  e quântico.
        3]Estruturas.
        4]Energias.
        5]Fenômenos.
        6]Potenciais., e potenciais de campos, de energias, de transições de estruturas e estados físicos, quãntico,  e estados de fenômenos e estados de transições, transformações e decaimentos.
        7]Transições de fases de estados físicos [amorfos e cristalinos] e estados de energias e fenômenos de Graceli.
        8]Tipos e níveis de magnetismo [em paramagnéticos, diamagnético, ferromagnéticos] e eletricidade, radioatividade [fissões e fusões], e luz [laser, maser, incandescências, fluorescências, fosforescências, e outros.
        9] especificidade térmica, de outras energias, e fenômenos das estruturas, e transições de fases.
        10] especificidade de tempo de ações em processos físicos e quântico.


        T l    T l     E l       Fl         dfG l   
        N l    El                 tf l
        P l    Ml                 tfefel 
        Ta l   Rl
                 Ll
                 D


        Matriz categorial de Graceli.


        T l    T l     E l       Fl         dfG l   
        N l    El                 tf l
        P l    Ml                 tfefel 
        Ta l   Rl
                 Ll
                 Dl


        Tipos, níveis, potenciais, tempo de ação, temperatura, eletricidade, magnetismo, radioatividade, luminescências, dinâmicas, estruturas, fenômenos, transições de fenômenos e estados físicos, e estados de energias, dimensões fenomênicas de Graceli.

        [estruturas: isótopos, partículas, amorfos e cristalinos, paramagnéticos, dia, ferromagnéticos, e estados [físicos, quântico, de energias, de fenômenos, de transições, de interações, transformações e decaimentos, emissões e absorções, eletrostático, condutividade e fluidez]].
        trans-intermecânica de supercondutividade no sistema categorial de Graceli.

        EPG = d [hc] [T / IEEpei [pit] = [pTEMRLD] and [fao] [itd] [iicee] tetdvd [pe] cee [caG].]

        p it = potentials of interactions and transformations.
        Temperature divided by isotopes and physical states and potential states of energies and isotopes = emissions, random wave fluxes, ion interactions, charges and energies structures, tunnels and entanglements, transformations and decays, vibrations and dilations, electrostatic potential, conductivities, entropies and enthalpies. categories and agents of Graceli.

        h e = quantum index and speed of light.

        [pTEMRlD] = THERMAL, ELECTRICAL, MAGNETIC, RADIOACTIVE, Luminescence, DYNAMIC POTENTIAL] ..


        EPG = GRACELI POTENTIAL STATUS.

        [pTFE] = POTENCIAL DE TRANSIÇÕES DE FASES DE ESTADOS FÍSICOS E DE ENERGIAS E FANÔMENOS [TRANSIÇÕES DE GRACELI]

        , [pTEMRLD] [hc] [pI] [PF] [pIT][pTFE] [CG].

        segunda-feira, 25 de fevereiro de 2019


        x
        decadimensional
        x
        T l    T l     E l       Fl         dfG l   
        N l    El                 tf l
        P l    Ml                 tfefel 
        Ta l   Rl
                 Ll
                 D




         Hz
        x
        decadimensional
        x
        T l    T l     E l       Fl         dfG l   
        N l    El                 tf l
        P l    Ml                 tfefel 
        Ta l   Rl
                 Ll
                 D





        x
        decadimensional
        x
        T l    T l     E l       Fl         dfG l   
        N l    El                 tf l
        P l    Ml                 tfefel 
        Ta l   Rl
                 Ll
                 D






        x
        decadimensional
        x
        T l    T l     E l       Fl         dfG l   
        N l    El                 tf l
        P l    Ml                 tfefel 
        Ta l   Rl
                 Ll
                 D




        ou dividindo ambos os lados por h para converter E para f):
        x
        decadimensional
        x
        T l    T l     E l       Fl         dfG l   
        N l    El                 tf l
        P l    Ml                 tfefel 
        Ta l   Rl
                 Ll
                 D






        Lei de Moseley é uma lei da gravidade obtida pela relação entre raios-X característicos dos átomos. É importante historicamente na justificação do modelo nuclear para o átomo, em que toda a carga positiva está contida no núcleo do átomo, e é associada ao seu número de elétrons. Na época de Moseley, o número atômico era apenas a posição do elemento na tabela periódica, sem significado físico. [1]


        Nas conversas com Niels Bohr em 1913, Moseley ficou interessado no modelo atômico de Bohr, em que o espectro de emissão eletromagnética dos átomos é proporcional à raiz quadrada de Z, ou seja, à carga elétrica no núcleo (que tinha sido descoberta dois anos antes). O modelo de Bohr tinha sido bem sucedido em demonstrar a fórmula empírica de Rydberg para o átomo de Hidrogênio, porém não conseguia explicar o espectro para os elementos mais massivos. Em particular, apenas dois anos antes, Rutherford em 1911, postulou que o Z para átomos de prata menos que a metade de sua massa e pouco tempo depois, Antonius van den Broek sugeriu que o valor de Z não era a metade da massa atômica, mas era exatamente o número atômico, ou a posição na tabela periódica. Até aquela época, não se conhecia qualquer significado físico para a posição do elemento na tabela periódica, com exceção da ordenação de algumas propriedades químicas.
        Na maioria dos casos, a tabela periódica tende a ficar de acordo com a massa atômica, porém existem alguns casos famosos de átomos com número atômico maior e massa menos, como por exemplo o []] com massa 58,9 e Z=27 e o níquel de massa 58,7 e Z=28.
        Como o espectro de emissão para átomos com Z altos estão na faixa dos raios-X moles (facilmente absorvidos pelo ar), Moseley precisou utilizar tubos de vácuo. Usando as técnicas de difração de raios-X, Moseley descobriu que as linhas de emissões mais intensas dos átomos eram intrinsecamente relacionadas com o número atômico Z.
        Essa linha atualmente é conhecida como linha K-alfa. E finalmente Moseley descobriu que essa relação podia ser descrita por uma fórmula simples, que ficou conhecida como a Lei de Moseley.
        Onde:
         é a frequencia de emissão da linha Kα
         and  são constantes que dependem do tipo de linha
        Por exemplo, os valores de  e  são os mesmos para todas as linhas  então a fórmula pode ser simplificada para:
         Hz
        Moseley escolheu mostrar a fórmula sem  mais com um número constante puro, no estilo de Rydberg, deixando a constante como 3/4 (ou 1- 1/4) da frequência fundamental de Rydberg ((3.29*1015 Hz) para as linhas  e novamente para as linhas  ficou igual a 1/4 - 1/9 = 5/36 vezes a frequência de Rydberg, essa foi a forma que Moseley escolheu para escrever sua fórmula.[2]
        A constante empírica  é dado pelo fit dos dados das linhas de emissão  e  Moseley obteve o valor (Z - 7.4)² para as linhas  e  igual a 1 para as linhas .
        Abaixo está a formulação original de Moseley (com os dois lados elevado ao quadrado para melhor clareza).
         Hz
         Hz

        Derivação e justificativo do modelo de Bohr do núcleo atômico de Rutheford[editar | editar código-fonte]

        Moseley deduziu sua fórmula empiricamente plotando a raiz quadrada das frequências de emissão de raios-x em função do número atômico, entretanto, sua dedução podia ser explicada em termos do modelo de Bohr (veja detalhes para a derivação para o átomo de Hidrogênio), se certos pressupostos razoáveis sobre a estrutura atômica dos outros elementos forem feitos, porém na época em que Moseley derivou sua lei, nem ele e nem Bohr conseguiu explicar a sua forma.
        A fórmula empírica de Rydberg é explicada pelo modelo de Bohr através da descrição de transições ou saltos quânticos entre um nível de energia a outro no átomo de Hidrogênio. Quando um elétron salta de um nível energético para outro, um fóton é emitido. Usando a fórmula para diferentes níveis de energia, é possível determinar as energias, ou frequências que um átomo de Hidrogênio pode emitir.
        energia do fóton que um átomo de hidrogênio emite no modelo de Bohr, é dado pela diferença de energia entre dois níveis.
        (note que Bohr usou unidades de Planck em que ), e
         = massa do elétron
         = carga do elétron (1.60 × 10−19 coulombs)
         = número quântico do nível final de energia
         = número quântico do nível inicial de energia
        Assume-se que o nível de energia final é menor do que o nível inicial.
        Por exemplo, para o hidrogênio, a fórmula fica  por que o Z (a carga elétrica positiva no núcleo) é igual a 1, com isso, o núcleo de hidrogênio contém uma única carga. Assim, para o átomo de hidrogênio (onde o elétron pode ser descrito como uma nuvem esférica entorno do núcleo) Bohr percebeu que era necessário acrescentar uma quantidade adicional ao termo convencional  a fim de explicar a atração extra sobre o elétron, e portanto a energia extra entre os níveis quânticos.
        Isso foi feito em 1914 quando Bohr conseguiu adaptar a fórmula de Moseley, através de duas definições. A primeira é de que o elétron responsável pela linha espectral mais brilhante (Kα), que Moseley tinha estudado para diversos elementos, era resultado da transição de um único elétron entre as camadas K e L do átomo (i.e., da camada mais próxima do núcleo para a segunda mais próxima), com números de energia quântica de 1 e 2. Finalmente, o Z, embora ainda na raiz quadrada, requer que seja subtraído 1 para calcular o Kα (Após a morte de Moseley, isso foi entendido como uma correção da conta devido a carga total do núcleo, menos um elétron que remanesceu na camada K, visto simplesmente como elétron 1s). Em todo caso, o termo (Z-1) requer que esteja em uma raiz quadrada para se ajustar aos dados empíricos, então a conta de Bohr para a fórmula de Moseley para a linha Kα fica:
        ou dividindo ambos os lados por h para converter E para f):
        Agrupando todos os termos constantes da fórmula em uma única, resulta em um termo de frequência equivalente a 3/4 da energia de ionização de 13,6 eV (veja constante de Rydberg para hidrogênio = 3.29 x 1015 Hz), como o valor final de 2.47 x 1015 Hz, uma boa aproximação com o valor obtido empiricamente por Moseley de 2.48 x 1015 Hz. Essa frequência fundamental é igual a linha alfa da série de Lyman para o hidrogênio, porque a transição 1s para 2p é responsável pela linha alfa de Lyman no hidrogênio e para as linhas Kα do espectro de raios-X para elementos acima do hidrogênio, Moseley tinha plena consciência de que sua frequência fundamental era a linha alfa de Lyman, que a frequência fundamental de Rydberg resultava de duas energias atômicas fundamentais, e por isso que a diferença do fator de Rydberg-Bohr era de exatamente 3/4.
        Entretanto a necessidade da redução de Z por um número muito próximo de 1 para as linhas Kα dos elementos pesados, (acima do Alumínio) foi deduzida de forma totalmente empírica por Moseley, e não foi discutida de forma teórica em seus artigos, pois o conceito de camadas atômicas com pares de elétron ainda não tinha sido muito bem estabelecida em 1913 ( O assunto só ficaria mais claro por volta de 1920), e em particular o modelo de Schrödinger para as órbitas atômicas ainda não tinha sido formalmente introduzido, e ainda não foi totalmente entendido até antes de 1926.
        Até o momento, Moseley foi enigmático com Bohr sobre o termo Z-1, Bohr pensava que a camada interna dos elétrons podia conter de 4 a 6 elétrons. Moseley por um tempo pensou que as linhas K eram resultados a transição simultânea de 4 elétrons da camada L para K, porém ele não se comprometeu a ponto de publicas essas ideias.
        No que se refere as transições Lα, na visão moderna, associamos cada camada eletrônica com um número quântico n, onde cada camada contém 2n² elétrons, ou seja, se n=1, temos no máximo 2 elétrons, se n=2, 8 elétrons. O valor empírico de 7,4 obtido por Moseley para  é associado a transição de n=2 para 3, e é chamada de transição Lα (não confundir com transição alfa de Lyman), e ocorre da camada M para L na notação de letras de Bohr. O valor de 7,4 é agora conhecido como um efeito de blindagem eletrônica do elétrons contidos nas camadas n=1 e 2 (ou camadas K e L).

        Importância Histórica[editar | editar código-fonte]

        A lei de Moseley na forma escrita por Bohr, estabeleceu o número atômico como uma grandeza que pode ser medida experimentalmente e que fornece o número de prótonscontido no núcleo atômico. Como consequência direta do trabalho de Moseley com raios-X, os elementos puderam ser corretamente organizados na tabela periódica em ordem crescente de número atômico, ao invés da massa atômica (como consequência tivemos a inversão na posição do níquel (Z=28, 58.7 u) e cobalto (Z=27, 58.9 u).
        Por sua vez, foi capaz de fornecer resultados quantitativos das linhas espectrais, em conformidade com o modelo semi-quântico de Bohr/Rutherford, em que assumia que toda a carga elétrica positiva se concentrava no núcleo atômico, e que as linhas espectrais eram resultantes das diferenças de energia entre os níveis de energia que é permitido o elétron ocupar em torno do núcleo. O fato do modelo de Bohr das energias no átomo poder explicar as linhas espectrais de raios-X do alumínio até o ouro na tabela periódica, e que existia uma dependência do número atômico, foi um fator muito forte para a aceitação científica desse modelo da estrutura atômica.
        A lei de Moseley foi totalmente incorporada na visão moderna da mecânica quântica, incluindo a regra do único elétron 1s que permanece na camada K em todos os átomos, após a ejeção do outro elétron da camada K, concordando com a predição da equação de Schrödinger.










        Estados de Graceli de matéria, energias, momentuns, inércias, e entropias.


        Estados térmico.
        Estado quântico.
        De dilatação.
        De entropia.
        De potencia de entropia e relação com dilatação.
        De magnetismo [correntes, momentum e condutividades]..
        De eletricidade [correntes, momentum e condutividades].
        De condutividade.
        De mometum e fluxos variados.
        De potencial inercial da matéria e energia.
        De transformação.
        De comportamento de cargas e interações com elétrons.
        De emaranhamentos e transemaranhamentos.
        De paridades e transparidades.
        De radiação.
        Radioatividade.
        De radioisótopos.
        De relação entre radioatividade, radiação, eletromagnetismo e termoentropia.
        De capacidade e potencialidade de resistir a pressão, a capacidade de resistir a pressão e transformar em entropia e momentum.

        De resistir à temperaturas.
        E transformar em dilatação, interações entre partículas, energias e campos.
        Estado dos padrões de variações e efeitos variacionais.
        Estado de incerteza dos fenômenos e entre as suas interações.


        E outros estados de matéria, energia, momentum, tipos de inércia [como de inércia potencial de energias magnética, elétrica, forte e fraca, dinâmica, geométrica [côncava, convexa e plana] em sistema.


        E que todos estes tipos de estados tendem a ter ações de uns sobre os outros, formando um aglomerado de fenômenos de efeitos na produção de novas causas. E de efeitos variacionais de uns sobre os outros, ou seja, um sistema integrado.



        Sobre padrões de entropia.

        Mesmo havendo uma desordem, esta desordem segue alguns parâmetros futuros e que dependem de condições dos estados de Graceli, ou seja, a desordem segue alguns padrões e ordens conforme avança e passa por fases e agentes fenomênicos, estruturais e geométricos.


        Porem, a reversibilidade se torna impossível, aumenta a instabilidade e as incertezas de posição, intensidade, variações, efeitos e outros fenômenos conforme as próprias intensidades de dilatações, e agentes e estados envolvidos.


        Levando em consideração que mesmo havendo ordem não é possível a reversibilidade do estado e condições em que se encontravam a energia, matéria, momentum, inércias, dimensões, e outros agentes.


        A temperatura pode voltar ao seu lugar e ao seu ponto inicial, mas não as estruturas das partículas, as intensidades infinitésimas de padrões de energias, e nem o grau de oscilações que a energias, as interações, as transformações que passam estas partículas e suas energias, estruturas e interações, e as interações e intensidades de grau de variação de cada agente.


        Porem, a desordem é temporal, ou seja, com o passar do tempo outras ordens e padrões se afirmarão.


        Sendo que também a entropia varia conforme intensidade de instabilidade por tempo. E tempo por intensidade de instabilidade.


        Assim, segue efeitos variacionais e de incertezas por instabilidade de energia adicionada, e de tempo.


        Ou seja, uma grande instabilidade e desordem em pouco tempo vai levar a uma grande e instável por mais tempo uma entropia.


        Do que um grande tempo com pequena intensidade de instabilidade e energia adicionada num sistema ou numa variação térmica.


        Ou mesmo numa variação eletromagnética, ou mesmo na condutividade.


        Princípio tempo instabilidade de Graceli.

        Assim, a desordem acaba por encontrar uma ordem se não acontecer nenhuma instabilidade novamente. Pois, as partículas e energias tendem a se reorganizar novamente conforme o passar do tempo,  e esta reorganização segue um efeito progressivo em relação à desordem e tempo. Como os vistos acima.


        Ou seja, aquela organização anterior não vai mais acontecer, pois, segue o princípio da irreversibilidade, mas outras organizações se formarão conforme avança o tempo de estabilidade.


        as dimensões categorias podem ser divididas em cinco formas diversificadas.

        tipos, níveis, potenciais, tempo de ação, especificidades de transições de energias, de fenômenos, de estados de energias, físicos [estruturais], de fenômenos, estados quântico, e outros.



        paradox of the system of ten dimensions and categories of Graceli.



        a four-dimensional system can not define all the energies, changes of structures, states and phenomena within a structure, that is why there are ten or more dimensions, I have developed and I work with ten, but nature certainly goes beyond ten, with this we move to a decadimensional and categorial universe.



        that is, categories ground the variables of phenomena and their interactions and transformations.



        and with this we do not have a relationship with mass, but with structure, therefore, a structure carries with it much more than mass, since also mass is related to forces, inertia, resistances and energies.



        but structures are related to transitions of physical states, quantum, energies, phenomena, and others.



        as well as transitions of energies, phenomena, categories and dimensions.

        paradoxo do sistema de dez dimensões e categorias de Graceli.

        um sistema de quatro dimensões não tem como definir todas as energias, mudanças de estruturas, estados e fenômenos dentro de uma estrutura, por isto se tem dez ou mais dimensões, desenvolvi e trabalho com dez, mas a natureza com certeza vai alem das dez, com isto caminhamos para um universo decadimensional e categorial.

        ou seja, as categorias fundamentam as variáveis dos fenõmenos e suas interações e transformações.

        e com isto não se tem uma relação com massa, mas com estrutura, pois, uma estrutura carrega consigo muito mais do que massa, uma vez também que massa está relacionado com forças, inércia, resistências e energias.

        mas estruturas está relacionado com transições de estados físicos, quântico, de energias, de fenômenos, e outros.

        como também transições de energias, fenômenos, categorias e dimensões.







         = entropia reversível

        postulado categorial e decadimensional Graceli.

        TUDO QUE ESTÁ RELACIONADO COM ENERGIA, ESTRUTURAS, FENÔMENOS E DIMENSÕES ESTÁ INSERIDO NO SISTEMA DECADIMENSIONAL E CATEGORIAL GRACELI.


        todo sistema decadimensional e categorial é um sistema transcendente e indeterminado.
        matriz categorial Graceli.

        T l    T l     E l       Fl         dfG l   
        N l    El                 tf l
        P l    Ml                 tfefel 
        Ta l   Rl
                 Ll
                 D


        1] Cosmic space.
        2] Cosmic and quantum time.
        3] Structures.
        4] Energy.
        5] Phenomena.
        6] Potential.
        7] Phase transitions of physical [amorphous and crystalline] states and states of energies and phenomena of Graceli.
        8] Types and levels of magnetism [in paramagnetic, diamagnetic, ferromagnetic] and electricity, radioactivity [fissions and fusions], and light [laser, maser, incandescence, fluorescence, phosphorescence, and others.
        9] thermal specificity, other energies, and structure phenomena, and phase transitions.
        10] action time specificity in physical and quantum processes.




        Sistema decadimensional Graceli.

        1]Espaço cósmico.
        2]Tempo cósmico  e quântico.
        3]Estruturas.
        4]Energias.
        5]Fenômenos.
        6]Potenciais., e potenciais de campos, de energias, de transições de estruturas e estados físicos, quãntico,  e estados de fenômenos e estados de transições, transformações e decaimentos.
        7]Transições de fases de estados físicos [amorfos e cristalinos] e estados de energias e fenômenos de Graceli.
        8]Tipos e níveis de magnetismo [em paramagnéticos, diamagnético, ferromagnéticos] e eletricidade, radioatividade [fissões e fusões], e luz [laser, maser, incandescências, fluorescências, fosforescências, e outros.
        9] especificidade térmica, de outras energias, e fenômenos das estruturas, e transições de fases.
        10] especificidade de tempo de ações em processos físicos e quântico.


        T l    T l     E l       Fl         dfG l   
        N l    El                 tf l
        P l    Ml                 tfefel 
        Ta l   Rl
                 Ll
                 D


        Matriz categorial de Graceli.


        T l    T l     E l       Fl         dfG l   
        N l    El                 tf l
        P l    Ml                 tfefel 
        Ta l   Rl
                 Ll
                 Dl


        Tipos, níveis, potenciais, tempo de ação, temperatura, eletricidade, magnetismo, radioatividade, luminescências, dinâmicas, estruturas, fenômenos, transições de fenômenos e estados físicos, e estados de energias, dimensões fenomênicas de Graceli.

        [estruturas: isótopos, partículas, amorfos e cristalinos, paramagnéticos, dia, ferromagnéticos, e estados [físicos, quântico, de energias, de fenômenos, de transições, de interações, transformações e decaimentos, emissões e absorções, eletrostático, condutividade e fluidez]].
        trans-intermecânica de supercondutividade no sistema categorial de Graceli.

        EPG = d [hc] [T / IEEpei [pit] = [pTEMRLD] and [fao] [itd] [iicee] tetdvd [pe] cee [caG].]

        p it = potentials of interactions and transformations.
        Temperature divided by isotopes and physical states and potential states of energies and isotopes = emissions, random wave fluxes, ion interactions, charges and energies structures, tunnels and entanglements, transformations and decays, vibrations and dilations, electrostatic potential, conductivities, entropies and enthalpies. categories and agents of Graceli.

        h e = quantum index and speed of light.

        [pTEMRlD] = THERMAL, ELECTRICAL, MAGNETIC, RADIOACTIVE, Luminescence, DYNAMIC POTENTIAL] ..


        EPG = GRACELI POTENTIAL STATUS.

        [pTFE] = POTENCIAL DE TRANSIÇÕES DE FASES DE ESTADOS FÍSICOS E DE ENERGIAS E FANÔMENOS [TRANSIÇÕES DE GRACELI]

        , [pTEMRLD] [hc] [pI] [PF] [pIT][pTFE] [CG].

        Comentários

        Postagens mais visitadas deste blog

        TEORIAS E FILOSOFIAS DE GRACELI 160